Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2267330

ABSTRACT

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Subject(s)
Alveolar Epithelial Cells , Clathrin , Mice , Animals , Alveolar Epithelial Cells/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Clathrin/metabolism , Lung/metabolism , Epithelial Cells/metabolism , Serum Albumin/metabolism , Pulmonary Alveoli/metabolism
2.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2229935

ABSTRACT

The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.


Subject(s)
Autoantibodies , COVID-19 , Humans , Autoantigens , Critical Illness , Cytokines , SARS-CoV-2
3.
Respir Res ; 23(1): 263, 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2038755

ABSTRACT

BACKGROUND: Persistent symptoms after initial COVID-19 infection are common and are frequently referred to by the umbrella terms "post-COVID syndrome" and "long COVID". The sheer number of affected patients pose an increasing challenge to healthcare systems worldwide. To date, our understanding of the pathophysiology of the post-COVID syndrome remains poor and the extent to which persistent cardiopulmonary abnormalities contribute to the symptom complex is unclear. We sought to determine the presence and impact of cardiopulmonary sequelae after COVID-19 in longitudinal assessment. METHODS: We report on 71 patients who underwent comprehensive, longitudinal testing in regular intervals for up to 12 months after their initial COVID-19 diagnosis. Testing included pulmonary function testing, cardiopulmonary exercise testing, dedicated left and right heart echocardiography, lung ultrasonography, and cardiac MRI. RESULTS: Our results demonstrate that subjective quality of life after COVID-19 (EQ-5D visual acuity scale, VAS, 67.4 for patients treated as outpatient, 79.2 for patients admitted to the general floor, 71.8 for patients treated in an ICU) is not related to the severity of the initial infection. Maximal exercise capacity is also reduced (VO2max 79% predicted, SD ± 19%); however, this is driven in large parts by patients who had initially required ICU-level of care. The degree of objective reduction in exertion did not correlate with quality of life scores. Pulmonary function testing revealed mild and persistent reduction in DLCO over the first 12 months without significant restrictive or obstructive lung disease. Left and right heart function was intact with good RV function and intact RV/PA coupling, imaging findings suggestive of myocarditis were uncommon (7% of patients). CONCLUSION: A reduction in exercise capacity after COVID-19 is common, but is most prominent in patients previously treated in the ICU and more likely related to deconditioning or fatigue than to cardiopulmonary impairment. Subjective quality of life scores are independent of the severity of initial infection and do not correlate with objective measures of cardiopulmonary function. In our cohort, persistent cardiopulmonary impairment after COVID-19 was uncommon. The post-COVID syndrome is unlikely to be the result of cardiopulmonary sequalae and may reflect a post-ICU syndrome in some. Trial registration Registered on clinicaltrials.gov (NCT04442789), Date: June 23, 2020.


Subject(s)
COVID-19/complications , Exercise Test , Quality of Life , COVID-19 Testing , Echocardiography , Humans , Post-Acute COVID-19 Syndrome
4.
Eur J Epidemiol ; 37(8): 849-870, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1966157

ABSTRACT

The German government initiated the Network University Medicine (NUM) in early 2020 to improve national research activities on the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. To this end, 36 German Academic Medical Centers started to collaborate on 13 projects, with the largest being the National Pandemic Cohort Network (NAPKON). The NAPKON's goal is creating the most comprehensive Coronavirus Disease 2019 (COVID-19) cohort in Germany. Within NAPKON, adult and pediatric patients are observed in three complementary cohort platforms (Cross-Sectoral, High-Resolution and Population-Based) from the initial infection until up to three years of follow-up. Study procedures comprise comprehensive clinical and imaging diagnostics, quality-of-life assessment, patient-reported outcomes and biosampling. The three cohort platforms build on four infrastructure core units (Interaction, Biosampling, Epidemiology, and Integration) and collaborations with NUM projects. Key components of the data capture, regulatory, and data privacy are based on the German Centre for Cardiovascular Research. By April 01, 2022, 34 university and 40 non-university hospitals have enrolled 5298 patients with local data quality reviews performed on 4727 (89%). 47% were female, the median age was 52 (IQR 36-62-) and 50 pediatric cases were included. 44% of patients were hospitalized, 15% admitted to an intensive care unit, and 12% of patients deceased while enrolled. 8845 visits with biosampling in 4349 patients were conducted by April 03, 2022. In this overview article, we summarize NAPKON's design, relevant milestones including first study population characteristics, and outline the potential of NAPKON for German and international research activities.Trial registration https://clinicaltrials.gov/ct2/show/NCT04768998 . https://clinicaltrials.gov/ct2/show/NCT04747366 . https://clinicaltrials.gov/ct2/show/NCT04679584.


Subject(s)
COVID-19 , Pandemics , Adult , COVID-19/epidemiology , Child , Clinical Trials as Topic , Female , Humans , Intensive Care Units , Male , Middle Aged , Research Design , SARS-CoV-2
5.
Die Innere Medizin ; 63(8):811-812, 2022.
Article in German | EuropePMC | ID: covidwho-1958027
7.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1536467

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
8.
Nat Commun ; 12(1): 5536, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1428813

ABSTRACT

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Subject(s)
Endoplasmic Reticulum Stress , SARS-CoV-2/physiology , Virus Replication/physiology , Animals , Autophagy/drug effects , Bronchi/pathology , COVID-19/pathology , COVID-19/virology , Cell Differentiation/drug effects , Cell Extracts , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 229E, Human/physiology , Down-Regulation/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum-Associated Degradation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/virology , Heat-Shock Proteins/metabolism , Humans , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Protein Biosynthesis/drug effects , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Vero Cells , Virus Replication/drug effects
10.
Front Med (Lausanne) ; 7: 598379, 2020.
Article in English | MEDLINE | ID: covidwho-954188

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS) is associated with high mortality. Lung-protective ventilation is the current standard of care in patients with ARDS, but it might lead to hypercapnia, which is independently associated with worse outcomes. Extracorporeal carbon dioxide removal (ECCO2R) has been proposed as an adjuvant therapy to avoid progression of clinical severity and limit further ventilator-induced lung injury, but its use in COVID-19 has not been described yet. Acute kidney injury requiring renal replacement therapy (RRT) is common among critically ill COVID-19 patients. In centers with available dialysis, low-flow ECCO2R (<500 mL/min) using RRT platforms could be carried out by dialysis specialists and might be an option to efficiently allocate resources during the COVID-19 pandemic for patients with hypercapnia as the main indication. Here, we report the feasibility, safety, and efficacy of ECCO2R using an RRT platform to provide either standalone ECCO2R or ECCO2R combined with RRT in four hypercapnic patients with moderate ARDS. A randomized clinical trial is required to assess the overall benefit and harm. Clinical Trial Registration: ClinicalTrials.gov. Unique identifier: NCT04351906.

11.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-945036

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
12.
Thorax ; 76(2): 201-204, 2021 02.
Article in English | MEDLINE | ID: covidwho-920934

ABSTRACT

Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID­19. We describe the clinical, radiological and histological findings of patients with COVID­19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID­19 and might partially explain why a subgroup of COVID­19 patients benefits from systemic corticosteroids.


Subject(s)
COVID-19/complications , Lung/diagnostic imaging , Pneumonia/etiology , SARS-CoV-2 , Aged , Biopsy , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Male , Middle Aged , Pneumonia/diagnosis , Tomography, X-Ray Computed
13.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-798131

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Subject(s)
Coronavirus Infections/pathology , Membrane Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Respiratory Mucosa/metabolism , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Cells, Cultured , Female , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Oxygen/administration & dosage , Oxygen/analysis , Pandemics , Receptors, Virus/metabolism , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Proteases/genetics , Severity of Illness Index
15.
Eur Respir J ; 56(5)2020 Nov.
Article in English | MEDLINE | ID: covidwho-648811

ABSTRACT

While severe coronavirus infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), cause lung injury with high mortality rates, protective treatment strategies are not approved for clinical use.We elucidated the molecular mechanisms by which the cyclophilin inhibitors cyclosporin A (CsA) and alisporivir (ALV) restrict MERS-CoV to validate their suitability as readily available therapy in MERS-CoV infection.Calu-3 cells and primary human alveolar epithelial cells (hAECs) were infected with MERS-CoV and treated with CsA or ALV or inhibitors targeting cyclophilin inhibitor-regulated molecules including calcineurin, nuclear factor of activated T-cells (NFATs) or mitogen-activated protein kinases. Novel CsA-induced pathways were identified by RNA sequencing and manipulated by gene knockdown or neutralising antibodies. Viral replication was quantified by quantitative real-time PCR and 50% tissue culture infective dose. Data were validated in a murine MERS-CoV infection model.Both CsA and ALV reduced MERS-CoV titres and viral RNA replication in Calu-3 cells and hAECs, improving epithelial integrity. While neither calcineurin nor NFAT inhibition reduced MERS-CoV propagation, blockade of c-Jun N-terminal kinase diminished infectious viral particle release but not RNA accumulation. Importantly, CsA induced interferon regulatory factor 1 (IRF1), a pronounced type III interferon (IFNλ) response and expression of antiviral genes. Downregulation of IRF1 or IFNλ increased MERS-CoV propagation in the presence of CsA. Importantly, oral application of CsA reduced MERS-CoV replication in vivo, correlating with elevated lung IFNλ levels and improved outcome.We provide evidence that cyclophilin inhibitors efficiently decrease MERS-CoV replication in vitro and in vivo via upregulation of inflammatory antiviral cell responses, in particular IFNλ. CsA might therefore represent a promising candidate for treating MERS-CoV infection.


Subject(s)
Coronavirus Infections/prevention & control , Cyclophilins/antagonists & inhibitors , Cyclosporine/pharmacology , Interferons/metabolism , Middle East Respiratory Syndrome Coronavirus/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Animals , Calcineurin Inhibitors/pharmacology , Cell Culture Techniques , Coronavirus Infections/metabolism , Disease Models, Animal , Humans , Interferon Regulatory Factor-1/drug effects , Interferon Regulatory Factor-1/metabolism , Interferons/drug effects , Mice , Middle East Respiratory Syndrome Coronavirus/physiology , Virus Replication/drug effects , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL